API module for public-key infrastructure.
Provides functions to handle public-key infrastructure, for details see public_key(6).
Common Records and ASN.1 Types
Note!
All records used in this Reference Manual are generated from ASN.1 specifications and are documented in the User's Guide. See Public-key Records.
Use the following include directive to get access to the records and constant macros described here and in the User's Guide:
-include_lib("public_key/include/public_key.hrl").
Types
oid() = tuple()
Object identifier, a tuple of integers as generated by the ASN.1
compiler.
der_encoded() = binary()
pki_asn1_type() =
'Certificate' | 'RSAPrivateKey' | 'RSAPublicKey' |
'DSAPrivateKey' | 'DSAPublicKey' | 'DHParameter' |
'SubjectPublicKeyInfo' | 'PrivateKeyInfo' |
'CertificationRequest' | 'CertificateList' | 'ECPrivateKey' |
'EcpkParameters'
asn1_type() = atom()
ASN.1 type present in the Public Key applications ASN.1 specifications.
pem_entry() =
{pki_asn1_type(),
der_or_encrypted_der(),
not_encrypted | cipher_info()}
der_or_encrypted_der() = binary()
cipher_info() = {cipher(), cipher_info_params()}
cipher() = string()
salt() = binary()
cipher_info_params() =
salt() |
{#'PBEParameter'{}, digest_type()} |
#'PBES2-params'{}
Cipher = "RC2-CBC" | "DES-CBC" | "DES-EDE3-CBC"
Salt
could be generated with
crypto:strong_rand_bytes(8)
.
public_key() =
rsa_public_key() |
dsa_public_key() |
ec_public_key() |
ed_public_key()
rsa_public_key() = #'RSAPublicKey'{}
dsa_public_key() = {integer(), #'Dss-Parms'{}}
ec_public_key() = {#'ECPoint'{}, ecpk_parameters_api()}
ecpk_parameters() =
{ecParameters, #'ECParameters'{}} |
{namedCurve, Oid :: tuple()}
ecpk_parameters_api() =
ecpk_parameters() |
#'ECParameters'{} |
{namedCurve, Name :: crypto:ec_named_curve()}
ed_public_key() = {ed_pub, ed25519 | ed448, Key :: binary()}
Warning!
This format of the EdDSA curves is temporary and may change without prior notice!
private_key() =
rsa_private_key() |
dsa_private_key() |
ec_private_key() |
ed_private_key()
rsa_private_key() = #'RSAPrivateKey'{}
dsa_private_key() = #'DSAPrivateKey'{}
ec_private_key() = #'ECPrivateKey'{}
ed_private_key() =
{ed_pri, ed25519 | ed448, Pub :: binary(), Priv :: binary()}
Warning!
This format of the EdDSA curves is temporary and may change without prior notice!
key_params() =
#'DHParameter'{} |
{namedCurve, oid()} |
#'ECParameters'{} |
{rsa, Size :: integer(), PubExp :: integer()}
digest_type() =
none | sha1 |
crypto:rsa_digest_type() |
crypto:dss_digest_type() |
crypto:ecdsa_digest_type()
crl_reason() =
unspecified | keyCompromise | cACompromise |
affiliationChanged | superseded | cessationOfOperation |
certificateHold | privilegeWithdrawn | aACompromise
issuer_id() = {SerialNr :: integer(), issuer_name()}
issuer_name() = {rdnSequence, [#'AttributeTypeAndValue'{}]}
ssh_file() =
openssh_public_key | rfc4716_public_key | known_hosts |
auth_keys
Functions
compute_key(OthersECDHkey, MyECDHkey) -> SharedSecret
OthersECDHkey = #'ECPoint'{}
MyECDHkey = #'ECPrivateKey'{}
SharedSecret = binary()
Computes shared secret.
compute_key(OthersDHkey, MyDHkey, DHparms) -> SharedSecret
OthersDHkey = crypto:dh_public()
MyDHkey = crypto:dh_private()
DHparms = #'DHParameter'{}
SharedSecret = binary()
Computes shared secret.
decrypt_private(CipherText, Key) -> PlainText
CipherText = binary()
Key = rsa_private_key()
PlainText = binary()
decrypt_private(CipherText, Key, Options) -> PlainText
CipherText = binary()
Key = rsa_private_key()
Options = crypto:pk_encrypt_decrypt_opts()
PlainText = binary()
Public-key decryption using the private key. See also crypto:private_decrypt/4
decrypt_public(CipherText, Key) -> PlainText
CipherText = binary()
Key = rsa_public_key()
PlainText = binary()
decrypt_public(CipherText, Key, Options) -> PlainText
CipherText = binary()
Key = rsa_public_key()
Options = crypto:pk_encrypt_decrypt_opts()
PlainText = binary()
Public-key decryption using the public key. See also crypto:public_decrypt/4
der_decode(Asn1Type, Der) -> Entity
Asn1Type = asn1_type()
Der = binary()
Entity = term()
Decodes a public-key ASN.1 DER encoded entity.
der_encode(Asn1Type, Entity) -> Der
Asn1Type = asn1_type()
Entity = term()
Der = binary()
Encodes a public-key entity with ASN.1 DER encoding.
dh_gex_group(MinSize, SuggestedSize, MaxSize, Groups) ->
{ok, {Size, Group}} | {error, term()}
MinSize = SuggestedSize = MaxSize = integer() >= 1
Groups = undefined | [{Size, [Group]}]
Size = integer() >= 1
Group = {G, P}
G = P = integer() >= 1
Selects a group for Diffie-Hellman key exchange with the key size in the range MinSize...MaxSize
and as close to SuggestedSize
as possible. If Groups == undefined
a default set will be
used, otherwise the group is selected from Groups
.
First a size, as close as possible to SuggestedSize, is selected. Then one group with that key size
is randomly selected from the specified set of groups. If no size within the limits of MinSize
and MaxSize
is available, {error,no_group_found}
is returned.
The default set of groups is listed in lib/public_key/priv/moduli
. This file may be regenerated like this:
$> cd $ERL_TOP/lib/public_key/priv/ $> generate ---- wait until all background jobs has finished. It may take several days ! $> cat moduli-* > moduli $> cd ..; make
encrypt_private(PlainText, Key) -> CipherText
PlainText = binary()
Key = rsa_private_key()
CipherText = binary()
encrypt_private(PlainText, Key, Options) -> CipherText
PlainText = binary()
Key = rsa_private_key()
Options = crypto:pk_encrypt_decrypt_opts()
CipherText = binary()
Public-key encryption using the private key. See also crypto:private_encrypt/4.
encrypt_public(PlainText, Key) -> CipherText
PlainText = binary()
Key = rsa_public_key()
CipherText = binary()
encrypt_public(PlainText, Key, Options) -> CipherText
PlainText = binary()
Key = rsa_public_key()
Options = crypto:pk_encrypt_decrypt_opts()
CipherText = binary()
Public-key encryption using the public key. See also crypto:public_encrypt/4.
generate_key(Params :: DHparams | ECparams | RSAparams) ->
DHkeys | ECkey | RSAkey
DHparams = #'DHParameter'{}
DHkeys = {PublicDH :: binary(), PrivateDH :: binary()}
ECparams = ecpk_parameters_api()
ECkey = #'ECPrivateKey'{}
RSAparams = {rsa, Size, PubExp}
Size = PubExp = integer() >= 1
RSAkey = #'RSAPrivateKey'{}
Generates a new keypair. Note that except for Diffie-Hellman the public key is included in the private key structure. See also crypto:generate_key/2
pem_decode(PemBin :: binary()) -> [pem_entry()]
Decodes PEM binary data and returns entries as ASN.1 DER encoded entities.
Example {ok, PemBin} = file:read_file("cert.pem").
PemEntries = public_key:pem_decode(PemBin).
pem_encode(PemEntries :: [pem_entry()]) -> binary()
Creates a PEM binary.
pem_entry_decode(PemEntry) -> term()
PemEntry = pem_entry()
pem_entry_decode(PemEntry, Password) -> term()
PemEntry = pem_entry()
Password = string()
Decodes a PEM entry. pem_decode/1
returns a list of PEM
entries. Notice that if the PEM entry is of type
'SubjectPublickeyInfo', it is further decoded to an
rsa_public_key()
or dsa_public_key()
.
pem_entry_encode(Asn1Type, Entity) -> pem_entry()
Asn1Type = pki_asn1_type()
Entity = term()
pem_entry_encode(Asn1Type, Entity, InfoPwd) -> pem_entry()
Asn1Type = pki_asn1_type()
Entity = term()
InfoPwd = {CipherInfo, Password}
CipherInfo = cipher_info()
Password = string()
Creates a PEM entry that can be feed to pem_encode/1
.
If Asn1Type
is 'SubjectPublicKeyInfo'
,
Entity
must be either an rsa_public_key()
,
dsa_public_key()
or an ec_public_key()
and this function creates the appropriate
'SubjectPublicKeyInfo'
entry.
pkix_decode_cert(Cert, Type) ->
#'Certificate'{} | #'OTPCertificate'{}
Cert = der_encoded()
Type = plain | otp
Decodes an ASN.1 DER-encoded PKIX certificate. Option otp
uses the customized ASN.1 specification OTP-PKIX.asn1 for
decoding and also recursively decode most of the standard
parts.
pkix_encode(Asn1Type, Entity, Type) -> Der
Asn1Type = asn1_type()
Entity = term()
Type = otp | plain
Der = der_encoded()
DER encodes a PKIX x509 certificate or part of such a
certificate. This function must be used for encoding certificates or parts of certificates
that are decoded/created in the otp
format, whereas for the plain format this
function directly calls der_encode/2
.
pkix_is_issuer(Cert, IssuerCert) -> boolean()
Cert =
der_encoded() | #'OTPCertificate'{} | #'CertificateList'{}IssuerCert = der_encoded() | #'OTPCertificate'{}
Checks if IssuerCert
issued Cert
.
pkix_is_fixed_dh_cert(Cert) -> boolean()
Cert = der_encoded() | #'OTPCertificate'{}
Checks if a certificate is a fixed Diffie-Hellman certificate.
pkix_is_self_signed(Cert) -> boolean()
Cert = der_encoded() | #'OTPCertificate'{}
Checks if a certificate is self-signed.
pkix_issuer_id(Cert, IssuedBy) ->
{ok, issuer_id()} | {error, Reason}
Cert = der_encoded() | #'OTPCertificate'{}
IssuedBy = self | other
Reason = term()
Returns the issuer id.
pkix_normalize_name(Issuer) -> Normalized
Issuer = Normalized = issuer_name()
Normalizes an issuer name so that it can be easily compared to another issuer name.
TrustedCert = #'OTPCertificate'{} | der_encoded() | atom()
CertChain = [der_encoded()]
Options = proplists:proplist()
PublicKeyInfo = {?'rsaEncryption' | ?'id-dsa', rsa_public_key() | integer(), 'NULL' | 'Dss-Parms'{}}
PolicyTree = term()
Reason = cert_expired | invalid_issuer | invalid_signature | name_not_permitted | missing_basic_constraint | invalid_key_usage | {revoked, crl_reason()} | atom()
verify_fun
.
Examples are unknown_ca
and selfsigned_peer.
Performs a basic path validation according to
verify_fun
.
Available options:
The fun must be defined as:
fun(OtpCert :: #'OTPCertificate'{},
Event :: {bad_cert, Reason :: atom() | {revoked, atom()}} |
{extension, #'Extension'{}},
InitialUserState :: term()) ->
{valid, UserState :: term()} |
{valid_peer, UserState :: term()} |
{fail, Reason :: term()} |
{unknown, UserState :: term()}.
If the verify callback fun returns {fail, Reason}
, the
verification process is immediately stopped. If the verify
callback fun returns {valid, UserState}
, the verification
process is continued. This can be used to accept specific path
validation errors, such as selfsigned_peer
, as well as
verifying application-specific extensions. If called with an
extension unknown to the user application, the return value
{unknown, UserState}
is to be used.
max_path_length
is the maximum number of non-self-issued
intermediate certificates that can follow the peer certificate
in a valid certification path. So, if max_path_length
is 0, the PEER must
be signed by the trusted ROOT-CA directly, if it is 1, the path can
be PEER, CA, ROOT-CA, if it is 2, the path can
be PEER, CA, CA, ROOT-CA, and so on.
Possible reasons for a bad certificate:
Certificate is no longer valid as its expiration date has passed.
Certificate issuer name does not match the name of the issuer certificate in the chain.
Certificate was not signed by its issuer certificate in the chain.
Invalid Subject Alternative Name extension.
Certificate, required to have the basic constraints extension, does not have a basic constraints extension.
Certificate key is used in an invalid way according to the key-usage extension.
Certificate has been revoked.
Application-specific error reason that is to be checked by the verify_fun
.
pkix_crl_issuer(CRL :: CRL | #'CertificateList'{}) -> Issuer
CRL = der_encoded()
Issuer = issuer_name()
Returns the issuer of the CRL
.
pkix_crls_validate(OTPcertificate, DPandCRLs, Options) ->
CRLstatus
OTPcertificate = #'OTPCertificate'{}
DPandCRLs = [DPandCRL]
DPandCRL = {DP, {DerCRL, CRL}}
DP = #'DistributionPoint'{}
DerCRL = der_encoded()
CRL = #'CertificateList'{}
Options = [{atom(), term()}]
CRLstatus = valid | {bad_cert, BadCertReason}
BadCertReason =
revocation_status_undetermined |
{revocation_status_undetermined, Reason :: term()} |
{revoked, crl_reason()}
Performs CRL validation. It is intended to be called from the verify fun of pkix_path_validation/3 .
Available options:
The fun has the following type specification:
fun(#'DistributionPoint'{}, #'CertificateList'{}) ->
#'CertificateList'{}
The fun uses the information in the distribution point to access the latest possible version of the CRL. If this fun is not specified, Public Key uses the default implementation:
fun(_DP, CRL) -> CRL end
The fun has the following type specification:
fun(#'DistributionPoint'{}, #'CertificateList'{},
{rdnSequence,[#'AttributeTypeAndValue'{}]}, term()) ->
{ok, #'OTPCertificate'{}, [der_encoded]}
The fun returns the root certificate and certificate chain that has signed the CRL.
fun(DP, CRL, Issuer, UserState) -> {ok, RootCert, CertChain}
Defaults to false. When revocation status cannot be determined, and this option is set to true, details of why no CRLs where accepted are included in the return value.
pkix_crl_verify(CRL, Cert) -> boolean()
CRL = der_encoded() | #'CertificateList'{}
Cert = der_encoded() | #'OTPCertificate'{}
Verify that Cert
is the CRL
signer.
pkix_dist_point(Cert) -> DistPoint
Cert = der_encoded() | #'OTPCertificate'{}
DistPoint = #'DistributionPoint'{}
Creates a distribution point for CRLs issued by the same issuer as Cert
.
Can be used as input to pkix_crls_validate/3
pkix_dist_points(Cert) -> DistPoints
Cert = der_encoded() | #'OTPCertificate'{}
DistPoints = [#'DistributionPoint'{}]
Extracts distribution points from the certificates extensions.
pkix_match_dist_point(CRL, DistPoint) -> boolean()
CRL = der_encoded() | #'CertificateList'{}
DistPoint = #'DistributionPoint'{}
Checks whether the given distribution point matches the Issuing Distribution Point of the CRL, as described in RFC 5280. If the CRL doesn't have an Issuing Distribution Point extension, the distribution point always matches.
pkix_sign(Cert, Key) -> Der
Cert = #'OTPTBSCertificate'{}
Key = private_key()
Der = der_encoded()
Signs an 'OTPTBSCertificate'. Returns the corresponding DER-encoded certificate.
pkix_sign_types(AlgorithmId) -> {DigestType, SignatureType}
AlgorithmId = oid()
DigestType = crypto:rsa_digest_type()
SignatureType = rsa | dsa | ecdsa
Translates signature algorithm OID to Erlang digest and signature types.
The AlgorithmId
is the signature OID from a certificate or a certificate revocation list.
Options = #{chain_type() := chain_opts()}
chain_type() = server_chain | client_chain
chain_opts() = #{root := [cert_opt()] | root_cert(), peer := [cert_opt()], intermediates => [[cert_opt()]]}
root_cert() = #{cert := der_encoded(), key := Key}
cert_opt() = {Key, Value}
Config = #{server_config := [conf_opt()], client_config := [conf_opt()]}
conf_opt() = {cert, der_encoded()} | {key, PrivateKey} |{cacerts, [der_encoded()]}
PrivateKey
is what
generate_key/1
returns.
Creates certificate configuration(s) consisting of certificate and its private key plus CA certificate bundle, for a client and a server, intended to facilitate automated testing of applications using X509-certificates, often through SSL/TLS. The test data can be used when you have control over both the client and the server in a test scenario.
When this function is called with a map containing
client and server chain specifications;
it generates both a client and a server certificate chain
where the cacerts
returned for the server contains the root cert the server
should trust and the intermediate certificates the server
should present to connecting clients.
The root cert the server should trust is the one used
as root of the client certificate chain.
Vice versa applies to the cacerts
returned for the client.
The root cert(s) can either be pre-generated with
pkix_test_root_cert/2
, or if options are specified; it is (they are)
generated.
When this function is called with a list of certificate options;
it generates a configuration with just one node certificate
where cacerts
contains the root cert
and the intermediate certs that should be presented to a peer.
In this case the same root cert must be used for all peers.
This is useful in for example an Erlang distributed cluster
where any node, towards another node, acts either
as a server or as a client depending on who connects to whom.
The generated certificate contains a subject altname,
which is not needed in a client certificate,
but makes the certificate useful for both roles.
The cert_opt()
type consists of the following options:
Hash algorithm to be used for signing the certificate together with the key option. Defaults to sha that is sha1.
Parameters to be used to call public_key:generate_key/1, to generate a key, or an existing key. Defaults to generating an ECDSA key. Note this could fail if Erlang/OTP is compiled with a very old cryptolib.
The validity period of the certificate.
Extensions to include in the certificate.
Default extensions included in CA certificates if not otherwise specified are:
[#'Extension'{extnID = ?'id-ce-keyUsage',
extnValue = [keyCertSign, cRLSign],
critical = false},
#'Extension'{extnID = ?'id-ce-basicConstraints',
extnValue = #'BasicConstraints'{cA = true},
critical = true}]
Default extensions included in the server peer cert if not otherwise specified are:
[#'Extension'{extnID = ?'id-ce-keyUsage',
extnValue = [digitalSignature, keyAgreement],
critical = false},
#'Extension'{extnID = ?'id-ce-subjectAltName',
extnValue = [{dNSName, Hostname}],
critical = false}]
Hostname is the result of calling net_adm:localhost() in the Erlang node where this funcion is called.
Note!
Note that the generated certificates and keys does not provide a formally correct PKIX-trust-chain and they cannot be used to achieve real security. This function is provided for testing purposes only.
Name = string()
Options = [cert_opt()]
RootCert = #{cert := der_encoded(), key := Key}
Key
is generated by
generate_key/1.
Generates a root certificate that can be used in multiple calls to pkix_test_data/1 when you want the same root certificate for several generated certificates.
pkix_verify(Cert, Key) -> boolean()
Cert = der_encoded()
Key = public_key()
Verifies PKIX x.509 certificate signature.
Cert = der_encoded() | #'OTPCertificate'{}
ReferenceIDs = [ RefID ]
RefID = {dns_id,string()} | {srv_id,string()} | {uri_id,string()} | {ip,inet:ip_address()|string()} | {OtherRefID,term()}}
OtherRefID = atom()
Opts = [ PvhOpt() ]
PvhOpt = [MatchOpt | FailCallBackOpt | FqdnExtractOpt]
MatchOpt = {match_fun, fun(RefId | FQDN::string(), PresentedID) -> boolean() | default}
PresentedID = {dNSName,string()} | {uniformResourceIdentifier,string() | {iPAddress,list(byte())} | {OtherPresId,term()}}
OtherPresID = atom()
FailCallBackOpt = {fail_callback, fun(#'OTPCertificate'{}) -> boolean()}
FqdnExtractOpt = {fqdn_fun, fun(RefID) -> FQDN::string() | default | undefined}
This function checks that the Presented Identifier (e.g hostname) in a peer certificate is in agreement with at least one of the Reference Identifier that the client expects to be connected to. The function is intended to be added as an extra client check of the peer certificate when performing public_key:pkix_path_validation/3
See
The {OtherRefId,term()}
is defined by the user and is passed to the match_fun
, if defined.
If the term in OtherRefId
is a binary, it will be converted to a string.
The ip
Reference ID takes an
inet:ip_address()
or an ip address in string format (E.g "10.0.1.1" or "1234::5678:9012") as second element.
The options are:
match_fun
fun/2
in this option replaces the default host name matching rules. The fun should return a
boolean to tell if the Reference ID and Presented ID matches or not. The fun can also return a third
value, the atom default
, if the default matching rules shall apply.
This makes it possible to augment the tests with a special case:
fun(....) -> true; % My special case
(_, _) -> default % all others falls back to the inherit tests
end
See pkix_verify_hostname_match_fun/1 for a function that takes a protocol name as argument and returns a
fun/2
suitable for this option and
Re-defining the match operation
in the User's Guide for an example.
fail_callback
fun/1
is called when no ReferenceID
matches. The return value of the fun
(a boolean()
) decides the outcome. If true
the the certificate is accepted otherwise
it is rejected. See
"Pinning" a Certificate
in the User's Guide.
fqdn_fun
- the hostname
- the atom
default
: the default host name extract function will be used - the atom
undefined
: a host name could not be extracted. The pkix_verify_hostname/3 will returnfalse
.
For an example, see Hostname extraction in the User's Guide.
Protocol = https
RefId
FQDN
PresentedID
The return value of calling this function is intended to be used in the match_fun
option in
pkix_verify_hostname/3.
The returned fun augments the verify hostname matching according to the specific rules for the protocol in the argument.
sign(Msg, DigestType, Key) -> Signature
Msg = binary() | {digest, binary()}
DigestType = digest_type()
Key = private_key()
Signature = binary()
sign(Msg, DigestType, Key, Options) -> Signature
Msg = binary() | {digest, binary()}
DigestType = digest_type()
Key = private_key()
Options = crypto:pk_sign_verify_opts()
Signature = binary()
Creates a digital signature.
The Msg
is either the binary "plain text" data to be
signed or it is the hashed value of "plain text", that is, the
digest.
ssh_decode(SshBin, Type) -> Decoded
SshBin = binary()
Type = ssh2_pubkey | OtherType | InternalType
OtherType = public_key | ssh_file()
InternalType = new_openssh
Decoded = Decoded_ssh2_pubkey | Decoded_OtherType
Decoded_ssh2_pubkey = public_key()
Decoded_OtherType = [{public_key(), Attributes}]
Attributes = [{atom(), term()}]
Decodes an SSH file-binary. In the case of known_hosts
or
auth_keys
, the binary can include one or more lines of the
file. Returns a list of public keys and their attributes, possible
attribute values depends on the file type represented by the
binary.
If the Type
is ssh2_pubkey
, the result will be
Decoded_ssh2_pubkey
. Otherwise it will be Decoded_OtherType
.
{headers, [{string(), utf8_string()}]}
{bits, integer()} - In SSH version 1 files.
{bits, integer()} - In SSH version 1 files.
Example: {ok, SshBin} = file:read_file("known_hosts")
.
If Type
is public_key
the binary can be either
an RFC4716 public key or an OpenSSH public key.
ssh_encode(InData, Type) -> binary()
Type = ssh2_pubkey | OtherType
OtherType = public_key | ssh_file()
InData = InData_ssh2_pubkey | OtherInData
InData_ssh2_pubkey = public_key()
OtherInData = [{Key, Attributes}]
Key = public_key()
Attributes = [{atom(), term()}]
Encodes a list of SSH file entries (public keys and attributes) to a binary. Possible attributes depend on the file type, see ssh_decode/2 .
If the Type
is ssh2_pubkey
, the InData
shall be
InData_ssh2_pubkey
. Otherwise it shall be OtherInData
.
HostKey = public_key()
DigestType = digest_type()
Calculates a ssh fingerprint from a public host key as openssh does.
The algorithm in ssh_hostkey_fingerprint/1
is md5 to be compatible with older
ssh-keygen commands. The string from the second variant is prepended by the algorithm name
in uppercase as in newer ssh-keygen commands.
Examples:
2> public_key:ssh_hostkey_fingerprint(Key).
"f5:64:a6:c1:5a:cb:9f:0a:10:46:a2:5c:3e:2f:57:84"
3> public_key:ssh_hostkey_fingerprint(md5,Key).
"MD5:f5:64:a6:c1:5a:cb:9f:0a:10:46:a2:5c:3e:2f:57:84"
4> public_key:ssh_hostkey_fingerprint(sha,Key).
"SHA1:bSLY/C4QXLDL/Iwmhyg0PGW9UbY"
5> public_key:ssh_hostkey_fingerprint(sha256,Key).
"SHA256:aZGXhabfbf4oxglxltItWeHU7ub3Dc31NcNw2cMJePQ"
6> public_key:ssh_hostkey_fingerprint([sha,sha256],Key).
["SHA1:bSLY/C4QXLDL/Iwmhyg0PGW9UbY",
"SHA256:aZGXhabfbf4oxglxltItWeHU7ub3Dc31NcNw2cMJePQ"]
verify(Msg, DigestType, Signature, Key) -> boolean()
Msg = binary() | {digest, binary()}
DigestType = digest_type()
Signature = binary()
Key = public_key()
verify(Msg, DigestType, Signature, Key, Options) -> boolean()
Msg = binary() | {digest, binary()}
DigestType = digest_type()
Signature = binary()
Key = public_key()
Options = crypto:pk_sign_verify_opts()
Verifies a digital signature.
The Msg
is either the binary "plain text" data
or it is the hashed value of "plain text", that is, the digest.
short_name_hash(Name) -> string()
Name = issuer_name()
Generates a short hash of an issuer name. The hash is returned as a string containing eight hexadecimal digits.
The return value of this function is the same as the result
of the commands openssl crl -hash
and
openssl x509 -issuer_hash
, when passed the issuer name of
a CRL or a certificate, respectively. This hash is used by the
c_rehash
tool to maintain a directory of symlinks to CRL
files, in order to facilitate looking up a CRL by its issuer
name.